Continuous Regression for Non-rigid Image Alignment
نویسندگان
چکیده
Parameterized Appearance Models (PAMs) such as Active Appearance Models (AAMs), Morphable Models and Boosted Appearance Models have been extensively used for face alignment. Broadly speaking, PAMs methods can be classified into generative and discriminative. Discriminative methods learn a mapping between appearance features and motion parameters (rigid and non-rigid). While discriminative approaches have some advantages (e.g., feature weighting, improved generalization), they suffer from two major drawbacks: (1) they need large amounts of perturbed samples to train a regressor or classifier, making the training process computationally expensive in space and time. (2) It is not practical to uniformly sample the space of motion parameters. In practice, there are regions of the motion space that are more densely sampled than others, resulting in biased models and lack of generalization. To solve these problems, this paper proposes a computationally efficient continuous regressor that does not require the sampling stage. Experiments on real data show the improvement in memory and time requirements to train a discriminative appearance model, as well as improved generalization.
منابع مشابه
Automatic Non-rigid Temporal Alignment of IVUS Sequences
Clinical studies on atherosclerosis regression/progression performed by intravascular ultrasound analysis require the alignment of pullbacks of the same patient before and after clinical interventions, In this paper, a methodology for the automatic alignment of IVUS sequences based on the dynamic time warping technique is proposed. The method is adapted to the specific IVUS alignment task by ap...
متن کاملبهبود سرعت "انطباق مبتنی بر روش برش گراف" جهت انطباق غیر صلب تصاویر تشدید مغناطیسی مغز
Image processing methods, which can visualize objects inside the human body, are of special interests. In clinical diagnosis using medical images, integration of useful data from separate images is often desired. The images have to be geometrically aligned for better observation. The procedure of mapping points from the reference image to corresponding points in the floating image is called Ima...
متن کامل4D Match Trees for Non-rigid Surface Alignment
This paper presents a method for dense 4D temporal alignment of partial reconstructions of non-rigid surfaces observed from single or multiple moving cameras of complex scenes. 4D Match Trees are introduced for robust global alignment of non-rigid shape based on the similarity between images across sequences and views. Wide-timeframe sparse correspondence between arbitrary pairs of images is es...
متن کاملSpatio-temporal (2D+T) non-rigid registration of real-time 3D echocardiography and cardiovascular MR image sequences.
In this paper we describe a method to non-rigidly co-register a 2D slice sequence from real-time 3D echocardiography with a 2D cardiovascular MR image sequence. This is challenging because the imaging modalities have different spatial and temporal resolution. Non-rigid registration is required for accurate alignment due to imprecision of cardiac gating and natural motion variations between card...
متن کاملUsing a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کامل